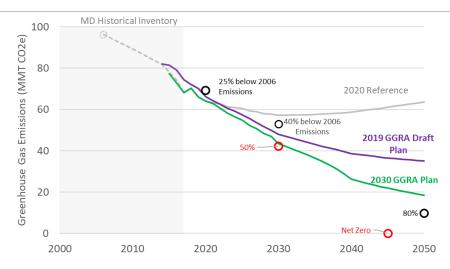
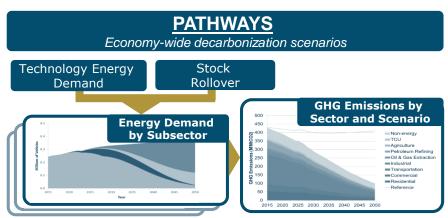


Technical Support for Maryland's Energy Transition Plan US Climate Alliance & E3

Scope of Work Presentation for the Mitigation Working Group February 16, 2021

Charles Li, Senior Consultant
Dan Aas, Director
Tory Clark, Director




- +Background
- **+**Key Questions
- +E3's Analysis Plan
- **+**Proposed MWG's Involvement
- **+**Optional Scopes

- + E3 has been supporting MDE's development of Maryland's statewide climate plan.
- + E3 developed a Maryland-specific PATHWAYS model, which considers energy efficiency, renewables, adoption of heat pumps, along with other measures to achieve Maryland GGRA goals.
- + E3 will leverage our experience and toolkit to support **MWG** in developing an **Energy Transition**Plan for the buildings sector.

GGRA Plan Emission Reduction Projections based on E3's PATHWAYS Analysis

Key questions and E3's analysis plan

- + E3 identified two key questions based on MWG's requests for technical analysis to support the Energy Transition Plan
 - 1. What are the potential pathways to achieve deep decarbonization of Maryland's buildings stock by mid-century?
 - What are the costs and benefits of each pathway, considering incremental cost to the electric system, fuel costs and heating equipment costs?

+ E3 proposes to organize the technical analysis in two phases

Phase I Building
Decarbonization
Pathways Analysis

Main focus of the scope
To identify the least-cost strategy
to decarbonize Maryland's

buildings

Phase II

Detailed Consumer Economics Analysis

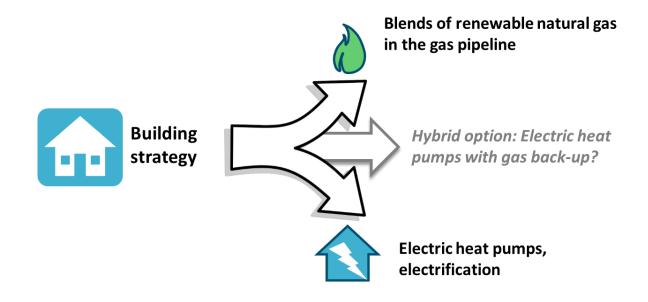
Optional if time and budget permits

□ To evaluate consumer cost impacts for the various customer segments

Phase I Building Decarbonization Pathways

Building Decarbonization Pathways Analysis

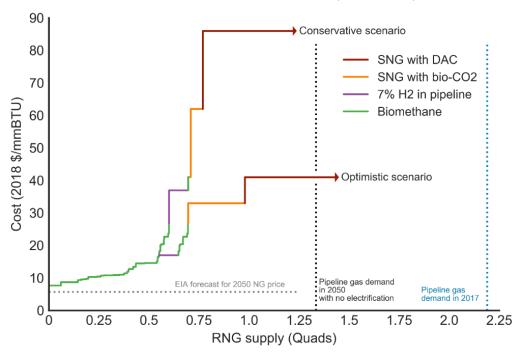
Develop Building Decarbonization Scenarios


Develop Renewable Fuel Supply Curve

Estimate Heating Equipment Costs

Compare Total Costs of the Scenarios

Develop Building Decarbonization Scenarios


- +There are many strategies to decarbonize buildings, including energy efficiency, low-carbon fuels, and electrification
- +E3 proposes to work with a small group of MWG (technical advisory committee) to define building decarbonization scenarios informed by MWG's perspective

Develop Renewable Fuel Supply Curve

- +E3 has worked in other jurisdictions on costs and potential to produce zero-carbon fuels, which include biofuels, synthetic fuels and hydrogen.
- +E3 will develop one renewable fuel supply curve for Maryland reflecting our best knowledge, due to budget limit.

California Renewable Natural Gas Technical Potential and Cost Estimates in 2050 (\$/mmBTU)

Source: E3 report on "Natural Gas Distribution in California's Low-Carbon Future" (CEC 2020). Available online: https://ww2.energy.ca.gov/2019publications/CEC-500-2019-055-F.pdf

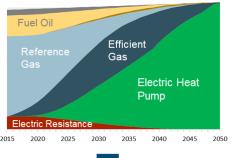
Estimate Heating Equipment Costs

Key Sectors

- +E3 will develop a high-level estimate of heating equipment costs for representative applications in Maryland.
- +The MWG can provide cost information about Maryland heat pump applications as available from its members
- +The cost estimate will include upfront all-in capital costs and operating costs

Key Types of Heating Equipment

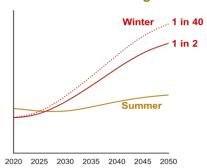
Hybrid System


Heat Pump HVAC

Compare Total Costs of the Scenarios

- +Total costs will include incremental electric system costs, fuel costs and heating equipment costs.
- +Incremental electric system costs
 - E3 will estimate peak load impact using the RESHAPE model
 - E3 will build a spreadsheet for a high-level view of incremental energy and capacity costs for the electric system

E3's PATHWAYS Model End-use Electrification Trajectory



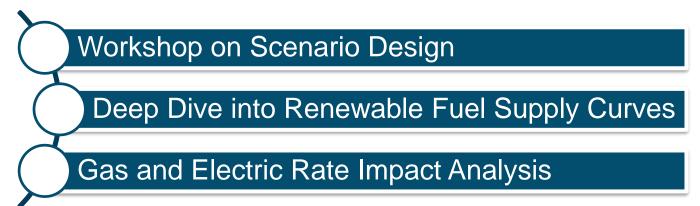
E3's RESHAPE Model

Change of Summer and Winter Peak Electric Loads due to building electrification

Proposed MWG's Involvement

+Scenario Definition

• E3 suggests meeting with a technical advisory committee of the MWG to present a straw proposal of the scenario definitions and receive feedback.


+Interim Check-in with the Buildings Subgroup

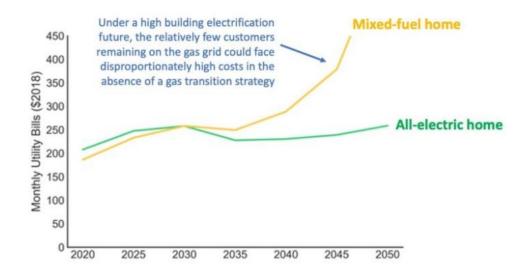
• E3 suggests meeting with the Buildings Subgroup to report progress and present preliminary results

+Final Presentation to the MWG

+Phase I Optional Scope:

+Optional Phase II Scope:

Thank You


Charles Li: Charles.li@ethree.com

Gas and Electric Rate Impact Analysis

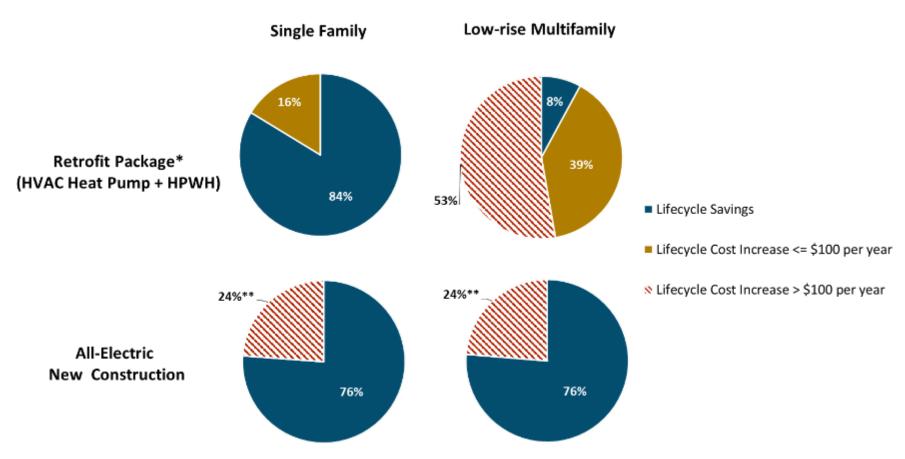
- +E3 can evaluate the customer bill impact comparing between an all-electric home vs a mixed-fuel home.
- +We can also compare the bill impacts among the building electrification strategies.

Full report and more information can be found here: https://www.ethree.com/at-cec-e3-highlights-need-for-gas-transition-strategy-in-california/

Detailed Heat Pump Cost Estimate

Example of installed equipment capital cost data developed for this analysis: Singe family HVAC heat pump retrofit, 1990s vintage, CZ06

3 Vintages	Single family	Low-rise multi-family	
Retrofit (Pre-1978) (No insulation, single pane windows)	1,400 sf	8 units (780 sf/unit and 960 sf/unit)	
Retrofit (1990s) (T24 building code 1992 construction)	2,100 sf	6 units (1,500 sf/unit) 8 units (780 sf/unit and 960 sf/unit)	
New Construction (2019 T24 building code)	2,700 sf		


Full report and more information can be found here: https://www.ethree.com/e3-quantifies-the-consumer-and-emissions-impacts-of-electrifying-california-homes/

Demolition				
Remove existing furnace				
Labor		680		
Disposal		500		
		1,180		
Installation				
Furnace Included in heat pump				
New Furnace, equipment price				
Heating included in split system heat pump				
Miscellaneous supplies				
Labor				
Air Conditioner				
New Air Conditioner, equipment price	\$	5,400		
Ducted split heat pump AHU in attic,				
3-ton 18 SEER/14 EER, 10 HSPF, two-	\$	-		
Concrete pad, precast		100		
Refrigerant piping and refrigerant		400		
Miscellaneous supplies		400		
Labor	\$	1,360		
Controls				
Thermostat & wiring	\$	400		
Gas and Electrical Supply				
New electrical circuits to equipment	\$	190		
Panel and main service modification		Not required		
Gas supply piping		Not required		
Labor	\$	340		
Ductwork modifications		-		
Miscellaneous supplies	\$	250		
Labor	\$	680		
	\$ \$ \$ \$	9,520		
Subtotal	\$	10,700		
	\$ \$ \$ \$ \$	-		
General Conditions and Overhead		1,605		
Design and Engineering		1,231		
Permit, testing and inspection		169		
Contractor Profit/Market Factor		274		
Recommended Budget		13,979		

Example of consumer cost-effectiveness analysis

Lifecycle Costs of Building Electrification

^{*} We assume that all consumers in retrofit homes have or would install air conditioning in the mixed fuel baseline.

Full report and more information can be found here:

https://www.ethree.com/e3-quantifies-the-consumer-and-emissions-impacts-of-electrifying-california-homes/

^{**} This category corresponds to buildings modeled in San Francisco (Climate Zone 3) that we assumed would not install air conditioning in the gas baseline home. 100% of all-electric new construction single family and low-rise multifamily homes that include air conditioning show lifecycle savings.